Interstellar space


Credit - YouTube (JHU Applied Physics Laboratory )

Interstellar space is the physical space within a galaxy beyond the influence each star has upon the encompassed plasma. The contents of interstellar space are called the interstellar medium. Approximately 70% of the mass of the interstellar medium consists of lone hydrogen atoms; most of the remainder consists of helium atoms. This is enriched with trace amounts of heavier atoms formed through stellar nucleosynthesis. These atoms are ejected into the interstellar medium by stellar winds or when evolved stars begin to shed their outer envelopes such as during the formation of a planetary nebula. The cataclysmic explosion of a supernova generates an expanding shock wave consisting of ejected materials that further enrich the medium. The density of matter in the interstellar medium can vary considerably: the average is around 106 particles per m3, but cold molecular clouds can hold 108–1012 per m3.


A number of molecules exist in interstellar space, as can tiny 0.1 μm dust particles. The tally of molecules discovered through radio astronomy is steadily increasing at the rate of about four new species per year. Large regions of higher density matter known as molecular clouds allow chemical reactions to occur, including the formation of organic polyatomic species. Much of this chemistry is driven by collisions. Energetic cosmic rays penetrate the cold, dense clouds and ionize hydrogen and helium, resulting, for example, in the dihydrogen cation. An ionized helium atom can then split relatively abundant carbon monoxide to produce ionized carbon, which in turn can lead to organic chemical reactions.
The local interstellar medium is a region of space within 100 parsecs (pc) of the Sun, which is of interest both for its proximity and for its interaction with the Solar System. This volume nearly coincides with a region of space known as the Local Bubble, which is characterized by a lack of dense, cold clouds. It forms a cavity in the Orion Arm of the Milky Way galaxy, with dense molecular clouds lying along the borders, such as those in the constellations of Ophiuchus and Taurus. (The actual distance to the border of this cavity varies from 60 to 250 pc or more.) This volume contains about 104–105 stars and the local interstellar gas counterbalances the astrospheres that surround these stars, with the volume of each sphere varying depending on the local density of the interstellar medium. The Local Bubble contains dozens of warm interstellar clouds with temperatures of up to 7,000 K and radii of 0.5–5 pc.

When stars are moving at sufficiently high peculiar velocities, their astrospheres can generate bow shocks as they collide with the interstellar medium. For decades it was assumed that the Sun had a bow shock. In 2012, data from Interstellar Boundary Explorer (IBEX) and NASA's Voyager probes showed that the Sun's bow shock does not exist. Instead, these authors argue that a subsonic bow wave defines the transition from the solar wind flow to the interstellar medium. A bow shock is the third boundary of an astrosphere after the termination shock and the astropause (called the heliopause in the Solar System).